An Approach for Efficient Planning of Robotic Manipulation Tasks

نویسندگان

  • Richard Dearden
  • Chris Burbridge
چکیده

Robot manipulation is a challenging task for planning as it involves a mixture of symbolic planning and geometric planning. We would like to express goals and many action effects symbolically, for example specifying a goal such as for all x, if x is a cup, then x should be on the tray, but to accomplish this we may need to plan the geometry of fitting all the cups on the tray and how to grasp, move and release the cups to achieve that geometry. In the ideal case, this could be accomplished by a fully hybrid planner that alternates between geometric and symbolic reasoning to generate a solution. However, in practice this is very complex, and the full power of this approach may only be required for a small subset of problems. Instead, we plan completely symbolically, and then attempt to generate a geometric plan by translating the symoblic predicates into geometric relationships. We then execute this plan in simulation, and if it fails, we backtrack, first in geometric space, and then if necessary in symbolic. We show that this approach, while not complete, solves a number of challenging manipulation problems, and demonstrate it running on a robotic platform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Step Planning for Robotic Manipulation of Articulated Objects

Multi-step planning is a process that allows us to solve complex problems by using a hybrid of a continuous kinematic planner and discrete search algorithm. In this paper we demonstrate how to formulate practical robotic manipulation tasks into this planning framework by applying the approach to that of a robot planning to fold a typical folding chair. We believe that this planning approach cou...

متن کامل

Completing Manipulation Tasks Efficiently in Complex Environments

An effective autonomous robot performing dangerous or menial tasks will need to act under significant time and energy constraints. At task time, the amount of effort a robot spends planning its motion directly detracts from its total performance. Manipulation tasks, however, present challenges to efficient motion planning. Tightly coupled steps (e.g. choices of object grasps or placements) allo...

متن کامل

Manipulation Control of a Flexible Space Free Flying Robot Using Fuzzy Tuning Approach

Cooperative object manipulation control of rigid-flexible multi-body systems in space is studied in this paper. During such tasks, flexible members like solar panels may get vibrated that in turn may lead to some oscillatory disturbing forces on other subsystems, and consequently produces error in the motion of the end-effectors of the cooperative manipulating arms. Therefore, to design and dev...

متن کامل

Enabling Motion Planning and Execution for Tasks Involving Deformation and Uncertainty by CALDER PHILLIPS-GRAFFLIN

A number of outstanding problems in robotic motion and manipulation involve tasks where degrees of freedom (DoF), be they part of the robot, an object being manipulated, or the surrounding environment, cannot be accurately controlled by the actuators of the robot alone. Rather, they are also controlled by physical properties or interactions – contact, robot dynamics, actuator behavior – that ar...

متن کامل

Application of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle: FE Simulation

Contact mechanics is related to the deformation study of solids that meet each other at one or more points. The physical and mathematical formulation of the problem is established upon the mechanics of materials and continuum mechanics and focuses on computations involving bodies with different characteristics in static or dynamic contact. Contact mechanics gives essential information for the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013